

Routing Concepts

- IPv4
- Routing
- Forwarding
- Some definitions
- Policy options
- Routing Protocols

Cisco ISP

IPv4

- Internet uses IPv4
 - addresses are 32 bits long range from 1.0.0.0 to 223.255.255.255 0.0.0.0 to 0.255.255.255 and 224.0.0.0 to 255.255.255.255 have "special" uses
- IPv4 address has a network portion and a host portion

Cisco ISP Workshop © 2005, Ciaco Systems, Inc. All rights reserved.

IPv4 address format

Address and subnet mask

written as

12.34.56.78 255.255.255.0 or

12.34.56.78/24

mask represents the number of network bits in the 32 bit address

the remaining bits are the host bits

Cisco ISP Workshop © 2005, Ciaco Systems, Inc. All rights

What does a router do?

Cisco ISP

© 2005, Cisco Systems, Inc. All rights reserved

A day in a life of a router

find path

forward packet, forward packet, forward packet, forward packet...

find alternate path

forward packet, forward packet, forward packet, forward packet...

repeat until powered off

Cisco ISP Workshops © 2005, Cisco Systems, Inc. All rights resen

Routing versus Forwarding

- Routing = building maps and giving directions
- Forwarding = moving packets between interfaces according to the "directions"

Cisco ISP

ISP hons 0.2005 Clara Systems for All rights reserve

IP Routing - finding the path

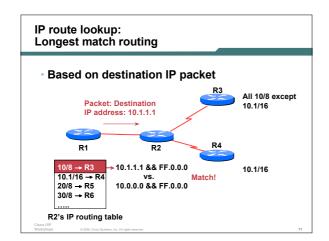
- Path derived from information received from a routing protocol
- Several alternative paths may exist best next hop stored in forwarding table
- Decisions are updated periodically or as topology changes (event driven)
- Decisions are based on:

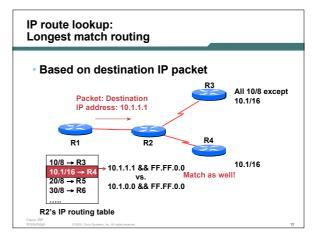
topology, policies and metrics (hop count, filtering, delay, bandwidth, etc.)

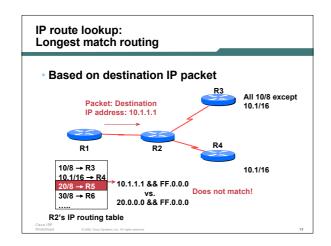
Cisco ISP

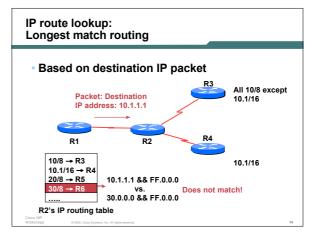
0.2005 Clara Systems for All rights was

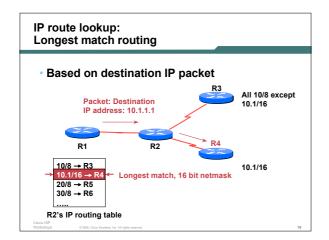
IP route lookup

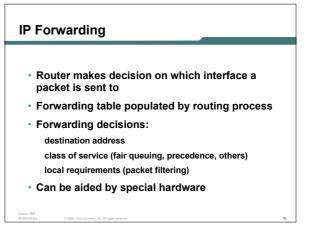

- Based on destination IP packet
- "longest match" routing more specific prefix preferred over less specific prefix

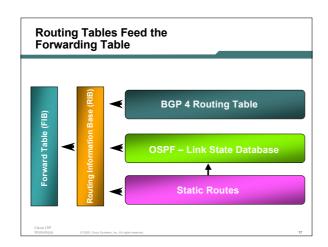

example: packet with destination of 10.1.1.1/32 is sent to the router announcing 10.1/16 rather than the router announcing 10/8.


Cisco ISI Worksho


© 2005, Claco Systems, Inc. All rights reserved.







RIBs and FIBs • FIB is the Forwarding Table It contains destinations and the interfaces to get to those destinations Used by the router to figure out where to send the packet Careful! Some people call this a route! • RIB is the Routing Table It contains a list of all the destinations and the various next hops used to get to those destinations – and lots of other information too! One destination can have lots of possible next-hops – only the best next-hop goes into the FIB

Explicit versus Default Routing

Default:

simple, cheap (cycles, memory, bandwidth) low granularity (metric games)

Explicit (default free zone)

high overhead, complex, high cost, high granularity

Hybrid

minimise overhead provide useful granularity requires some filtering knowledge

Cisco ISP

0.2005 Clara Systems for All rights reserve

Egress Traffic

- · How packets leave your network
- Egress traffic depends on:

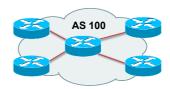
route availability (what others send you)
route acceptance (what you accept from others)
policy and tuning (what you do with routes from others)
Peering and transit agreements

Cisco IS

© 2005, Cisco Systems, Inc. All rights rese

Ingress Traffic

- How packets get to your network and your customers' networks
- · Ingress traffic depends on:


what information you send and to whom based on your addressing and AS's

based on others' policy (what they accept from you and what they do with it)

Cisco ISP Workshop

© 2005, Claco Systems, Inc. All rights reserved.

Autonomous System (AS)

- · Collection of networks with same routing policy
- Single routing protocol
- Usually under single ownership, trust and administrative control

Cisco ISP Workshops © 2005, Ciaco Systems, Inc. All rights reserved

Definition of terms

Neighbours

AS's which directly exchange routing information Routers which exchange routing information

Announce

send routing information to a neighbour

Accept

receive and use routing information sent by a neighbour

Originate

insert routing information into external announcements (usually as a result of the IGP)

Peers

routers in neighbouring AS's or within one AS which exchange routing and policy information

Cisco IS Worksho © 2005, Cisco Systems, Inc. All rights reserved

Routing flow and packet flow

AS 1 announce routing flow accept packet flow packet flow

For networks in AS1 and AS2 to communicate:

AS1 must announce to AS2

AS2 must accept from AS1

AS2 must announce to AS1

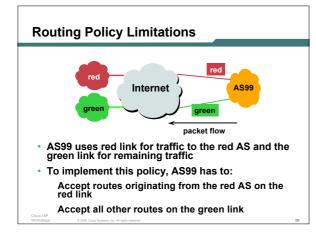
AS1 must accept from AS2

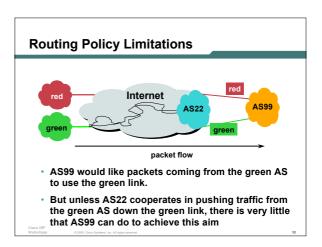
Disco ISP Vorkshops © 2005, Ciaco Syah

Routing flow and Traffic flow

 Traffic flow is always in the opposite direction of the flow of Routing information

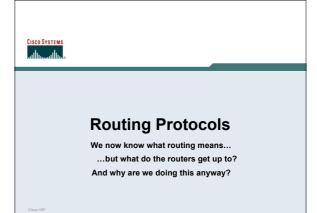
Filtering outgoing routing information inhibits traffic flow inbound


Filtering inbound routing information inhibits traffic flow outbound


Cisco ISP Workshops 0.2005, Cisco Systems.

Routing Flow/Packet Flow: With multiple ASes AS 1 N1 AS 8 AS 34 AS 16 N16 For net N1 in AS1 to send traffic to net N16 in AS16: AS16 must originate and announce N16 to AS8. AS8 must accept N16 from AS16. AS8 must announce N16 to AS1 or AS34. AS1 must accept N16 from AS8 or AS34. For two-way packet flow, similar policies must exist for N1.

Routing Flow/Packet Flow: With multiple ASes AS 1 AS 34 AS 16 N16 As multiple paths between sites are implemented it is easy to see how policies can become quite complex.


Provided to control traffic flow in and out of an ISP network ISP makes decisions on what routing information to accept and discard from its neighbours Individual routes Routes originated by specific ASes Routes traversing specific ASes Routes belonging to other groupings Groupings which you define as you see fit

Routing Policy Issues

- · 165000 prefixes (not realistic to set policy on all of them individually)
- 20000 origin AS's (too many)
- · routes tied to a specific AS or path may be unstable regardless of connectivity
- groups of AS's are a natural abstraction for filtering purposes

1: How Does Routing Work?

- Internet is made up of the ISPs who connect to each other's networks
- How does an ISP in Kenya tell an ISP in Japan what customers they have?
- And how does that ISP send data packets to the customers of the ISP in Japan, and get responses back

After all, as on a local ethernet, two way packet flow is needed for communication between two devices

2: How Does Routing Work?

 ISP in Kenya could buy a direct connection to the ISP in Japan

But this doesn't scale – thousands of ISPs, would need thousands of connections, and cost would be astronomical

Instead, ISP in Kenya tells his neighbouring ISPs what customers he has

And the neighbouring ISPs pass this information on to their neighbours, and so on

This process repeats until the information reaches the ISP in Japan

3: How Does Routing Work?

- · This process is called "Routing"
- The mechanisms used are called "Routing Protocols"
- Routing and Routing Protocols ensures that the Internet can scale, that thousands of ISPs can provide connectivity to each other, giving us the Internet we see today

4: How Does Routing Work?

- · ISP in Kenya doesn't actually tell his neighbouring ISPs the names of the customers
 - (network equipment does not understand names)
- Instead, he has received an IP address block as a member of the Regional Internet Registry serving Kenya

His customers have received address space from this address block as part of their "Internet service"

And he announces this address block to his neighbouring ISPs – this is called announcing a "route"

Routing Protocols

 Routers use "routing protocols" to exchange routing information with each other

IGP is used to refer to the process running on routers inside an ISP's network

EGP is used to refer to the process running between routers bordering directly connected ISP networks

Cisco ISF

What Is an IGP?

- Interior Gateway Protocol
- Within an Autonomous System
- Carries information about internal infrastructure prefixes
- Examples OSPF, ISIS, EIGRP

Cisco ISP

0.2005 Claro Svaterna Inc. All rights area

Why Do We Need an IGP?

ISP backbone scaling

Hierarchy

Limiting scope of failure

Only used for ISP's infrastructure addresses, not customers or anything else

Design goal is to minimise number of prefixes in IGP to aid scalability and rapid convergence

Cisco ISI Worksho © 2005, Cisco Systems, Inc. All rights reserved.

What Is an EGP?

- Exterior Gateway Protocol
- Used to convey routing information between Autonomous Systems
- De-coupled from the IGP
- Current EGP is BGP

Cisco ISP Workshop © 2005, Cisco Systems, Inc. All rights reserve

Why Do We Need an EGP?

 Scaling to large network Hierarchy

Limit scope of failure

- Define Administrative Boundary
- Policy

Control reachability of prefixes Merge separate organizations Connect multiple IGPs

Cisco ISP Workshop © 2005, Cisco Systems, Inc. All rights reserved

Interior versus Exterior Routing Protocols

Interior

automatic neighbour discovery

generally trust your IGP routers

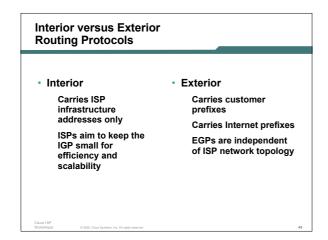
prefixes go to all IGP routers

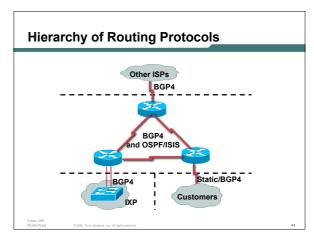
binds routers in one AS together

Exterior

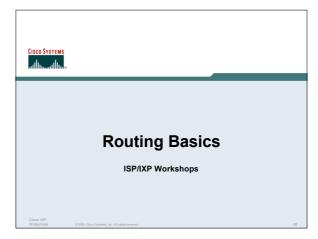
specifically configured peers

connecting with outside networks set administrative


boundaries


binds AS's together

Cisco ISP


© 2005, Cisco Systems, Inc. All rights rese

Inc. All rights reserved. 42

