Research & Education Network Ecosystem

- **Research & Education Network = REN**
 - NREN = National REN

- **Characteristics:**
 - High bandwidths: 10Gbps is typical, 40G and 100G rolling out
 - Research needs uncongested networks
 - RENs are lightly used, with lots of capacity (headroom)
 - Low latency (terrestrial fibre)
 - Open Networks with **NO** filtering

- **Hierarchical model**
Research & Education Network Ecosystem

• NREN Service Models
 – Peering network
 • Connects campuses together
 • Provides connectivity to international R&E
 • Peers at local IXPs
 • Implications: Campuses also need connectivity from ISP
 – REN provides all Internet connectivity
 • REN is the ISP for the campuses
 • Implications: Simplest for campuses – only one connection to manage
Research & Education Network Ecosystem

• Campus is the foundation of successful R&E network
• But, many:
 – Do not have any structure
 – Make heavy use of NAT and Firewalls limiting performance
 – Are built using unmanaged equipment
 – Are forced do dual home, without skills to manage this
 – Are built using outdated fibre and copper that cannot support high speeds
Campus Design Principles

• Simple design rules:
 – Minimise number of network devices in the path
 – Use hub & spoke (star topology), not daisy chains
 – Segment the network with routers in the core
 – Services at the core, not the edge
 – Always buy managed devices
 – Think very carefully about positioning of firewalls and NAT
 • Firewalls are for protecting servers and the services they host
 • Treat public campus network as untrustworthy as the Internet
Campus Cabling Best Practices

• Two types of cabling:
 – Unshielded twisted pair (UTP): for use inside racks and inside buildings
 – Fibre optic cabling: provides service between buildings and between network racks

• UTP
 – Cat5e – supports up to 1Gbps ethernet to 100metres
 – Cat6 – similar to Cat5e but costs more
 – Cat6a – 4x cost of Cat5e, for supporting 10Gbps over copper – not required for desktop yet

• Fibre Optics:
 – Multi-mode: outdated; expensive; short range; only found in equipment racks now
 – Single-mode: inexpensive; distances up to 80km; speeds over 100Gbps
Switching Architectures: Spanning Tree

• Switching Loops:
 – Unprotected means network traffic swamps network leading to outage
 – Good loops provide backup in case of link or device failure

• Spanning Tree Protocol
 – Runs on all switching devices
 – Calculates optimum path through a network between all L2 devices
 – STP, RSTP, MST flavours – RSTP recommended on all L2 devices
 – Careful selection of Bridge Priorities required
 • Root of the tree needs to be the core switch etc
Switching Architectures: VLANs

• Maximum number of devices on any one L2 broadcast domain should be kept under 100

• Beyond that, introduce virtual LANs
 – Allows one switch to support several different broadcast domains (LANs)
 – Allows the campus network to scale

• Best Practice Design:
 – One or several VLANs per building
 – Do NOT span VLANs across buildings
 – Never use VLAN 1
 – Route between VLANs in the core
Switching Architectures: Advanced L2

- **Link Aggregation**
 - Bundling more than one link between switches
 - Increasing bandwidth between two devices
 - Standard: LACP (Link Aggregation Control Protocol)

- **LLDP or CDP**
 - Link Layer Discovery Protocol / Cisco Discovery Protocol
 - Allows admin to discover other devices on the campus backbone

- **BPDU Guard**
 - Blocks Bridge PDUs on interfaces where not expected
Routing & Forwarding

• Routers
 – L3 devices, routing packets between broadcast domains

• Routing
 – Building tables of destinations based on information shared between routers by routing protocols

• Forwarding
 – Moving packets between interfaces based on information from the routing table

• Routing Protocols:
 – Static
 – Dynamic: OSPF, IS-IS, BGP
L3 Switches

• Contradiction:
 – L2 = switch
 – L3 = router
 – L3 Switch??

• An ethernet switch with some routing capability

• Core of the Campus needs to be a L3 Switch
 – Switch with many interfaces, but able to route at wire-speed between all the VLANs terminating on it
 – And host connection to campus services and link to campus border router
Migrating from Flat to Routed

- Many campuses are one huge flat network
 - Doesn’t work, doesn’t scale
- Migrate to VLANs + core router
 - Star network, not daisy-chain

Best practices:
- Design a migration plan! With rollbacks
- Design an address plan (IPv4 & IPv6)
- Deploy new VLAN scheme in one building first
 - Core → Distribution → Edge
- Test connectivity at each stage
- Migrate users, turn off VLAN 1, and move to next Building
Selecting Campus Devices

• **Edge Switch**
 – L2 only! (No L3 needed)
 – VLANs, RSTP, Encrypted Management, DHCP Snooping, RA Guard
 – Managed! (CLI, serial console, at least SNMPv2)
 – 24 or 48 10/100/1000 ports, fibre uplinks (1Gbps, 10Gbps better)

• **Distribution Switch**
 – Same basic specification as Edge switch
 – 12 or 24 copper or fibre ports, 10Gbps fibre uplink
Selecting Campus Devices

• Core Router
 – L3 Switch – Lots of fibre ports (1G/10G)
 – Robust line rate forwarding at L3
 – Sufficient ARP (IPv4) and NDP (IPv6) entries
 – DHCP relay/helper, full management (SSH, SNMPv2/3)
 – OSPF (v2 & v3), HSRP, Mirror/Span port
 – 2x Small form factor (1RU 48 port) rather than one “redundant” chassis

• Border Router
 – Robust line rate forwarding at L3
 – IPv4/6, OSPF (v2 & v3), BGP, NAT, full management (SSH, SNMPv2/3)
 – Small form factor (few ports needed) rather than one “redundant” chassis
Wireless on Campus

• Two wireless frequency ranges:
 – 2.4GHz – 802.11b/g/n
 • Provides only 4 non-overlapping channels (1, 6, 11, 14)
 – 5 GHz – 802.11a/n/ac
 • Provides 25 non-overlapping channels

• Design:
 – Not all Access Points are created equal – cheap AP → small CPU → few users
 – Avoid channel overlaps, pay attention to physical obstacles
 – Estimate number and type of users per AP
 – 802.11ac means 1Gbps access to the AP
 – Bring Your Own Device is standard today: 2-4 devices per person!
Wireless on Campus

• SSID:
 – “Wireless name”, the network users join
 – SSID planning: names matter, trade-off for roaming
 – Avoid tempting names
 – Users prefer seamless roaming
 • Where? Within a building? Across the whole campus?

• Authentication:
 – MAC address: easily defeated
 – Pre-Share Key: who knows the password? Fine for temporary setups only.
 – Captive Portal: better than PSK
 – 802.1x: WPA2-AES is the global standard, allows for EduRoam too
Dynamic Routing: OSPF

• OSPF:
 – Dynamic Routing protocol using SPF algorithm (same as used for Spanning Tree)
 – IETF standard, must be implemented on all L3 devices (routers)

• Essential next step beyond static routes
 – Small campus would have static default on core to border, and static routes from border to core for VLANs
 – Larger campuses deploy OSPF for scalability and to allow redundancy in the core
NAT

- Was developed to allow entities with non-routable address space to connect to global Internet
 - Now used to prolong IPv4

- Network Address and Port Translation, translates multiple IP addresses into one other IP address
 - TCP/UDP port distinguishes flows

- NAT Best Practices:
 - Deploy IPv6 – offloads majority of content traffic from NAT
 - As close to campus border → on border router!
 - Minimise translation time outs to allow efficient use of public address pool
 - Use different public address pools for different campus user categories
Campus Operations Best Practices

• DNS:
 – Local on-campus resolver, sub-millisecond RTT for cached DNS lookups
 – User experience: webpages load quickly
 – unbound software is simple to install and operate

• DHCP:
 – Without an address, nothing can get a connection
 – Make sure address pools are large enough, and lease times appropriate (short for wireless, longer for fixed ethernet)

• NTP:
 – Without time synchronisation across network devices, authentication protocols and DNS may fail, and security incidents hard to trace across devices
Campus Operations Best Practices

• Many other recommendations!

• Examples:
 – Implement anti-spoofing filters on all access ports (core router interfaces facing users)
 – NAT must only translate addresses used internally for campus
 – Block TCP/25 (SMTP) out bound apart from authorised email relays
 – Rate limit UDP rather than blocking it
 • Bittorrent will just move to TCP if UDP is blocked
 – Deploy IPv6
 • Reduces load on campus NAT device
 • Avoids situation where Bittorrent and other clients tunnel using IPv6
Campus Security Overview

• **Security is Hard – it is NOT a one box solution**
• Campus networks need to be open
• There will always be people being bad
• **Security is a Process:**
 – Assessment of what’s at risk
 – Protection: efforts to mitigate that risk
 – Detection of intrusions
 – Response
 – Repeat!
Campus Security Overview

• Policy Framework: Acceptable Use Policy
 – Without an AUP there is nothing a Campus Admin can do to enforce a security policy

• Network Management
 – MUST have managed equipment in the network
 – MUST run network monitoring tools (LibreNMS, NfSen, smokeping etc)

• Encryption
 – Disable clear text password protocols – deploy letsencrypt for mail servers and websites – no self-signed certs!

• Virus Protection
 – Viruses arrive by email or clickable links (all encrypted)
 – Firewall is useless for this, yet we still deploy firewalls to stop them!

• Authentication
 – Who is using our network? Each user must have account (LDAP or AD)
Campus Security Overview

• Wireless:
 – Who may install APs?
 – 802.1x authentication against central database

• Blocking Traffic:
 – Default needs to be to allow traffic, not block it
 – Block vulnerabilities – border router with simple filters can do this
 – Monitoring system needs to be in place tracking unusual trends
 – Blocking outbound ports seriously inconveniences visitors
 – Remember, Universities are designed to attract clever people, they will work around port blocking
Campus Security Overview

• Bandwidth Shaping
 – Per user? Per department? Some users have legitimate needs to move large datasets around → AUP to the rescue.

• Deep Packet Inspection
 – Won’t work for encrypted traffic. What’s the difference between encrypted humorous cat video and encrypted veterinary medicine video?
 – In-line controls are very expensive and are a serious bottle-neck

• Performance
 – Today’s 100Mbps campus backbone will become tomorrow’s 1Gbps campus backbone, and then on to 10Gbps. Which Firewall/DPI box??
Campus Security Overview

• Conclusion:
 – Firewalls are useless
 – Bandwidth shaping is useless
 – DPI is useless

• Solution:
 – Scalable campus design
 – Security policy including an AUP at its core
 – Monitoring! Monitoring!
 – Firewalls belong in front of servers in campus core
Network Monitoring & Management

• What & Why We Monitor
• Baseline Performance & Attack Detection
• Network Attack Detection
• What & Why We Manage
• Network Monitoring & Management Tools – large number of open source tools
• The NOC: Consolidating Systems – not necessarily a place, but an organizational concept
Network Monitoring & Management

Examples of monitoring & management systems for a Campus

<table>
<thead>
<tr>
<th>Tool</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>RT</td>
<td>Request Tracker – ticketing system for tracking requests</td>
</tr>
<tr>
<td>RANCID</td>
<td>Device configuration tracking & management</td>
</tr>
<tr>
<td>LibreNMS</td>
<td>Monitoring device health, traffic and interface loads</td>
</tr>
<tr>
<td>NfSen</td>
<td>NetFlow/IPFIX traffic flows crossing border router/NAT</td>
</tr>
<tr>
<td>Smokeping</td>
<td>Monitoring connection health, RTT, response time, jitter within campus and to the REN/ISP</td>
</tr>
<tr>
<td>Nagios</td>
<td>Device availability</td>
</tr>
</tbody>
</table>
Questions?

This document is a result of work by the Network Startup Resource Center (NSRC at https://www.nsrc.org). This document may be freely copied, modified, and otherwise re-used on the condition that any re-use acknowledge the NSRC as the original source.