€3 MANRS

Git for network engineers

Philip Paeps

philip@trouble.is

PacNOG 32 — Nuku‘alofa, Tonga
27 November 2023

Agenda

1. Revision control essentials
2. Git survival kit for network engineers

3. Using GitHub or GitLab to collaborate

Revision control essentials

Computers are better at remembering things than you are.

=

Revision control for network engineers

Revision control systems remember changes you make to your network.
With good revision control hygiene, you can easily:

* Revert configurations to a known working state

* Review changes before deploying them to production

* Recover configurations when network equipment breaks

« Collaborate on projects with others without conflicts

o

Not only for source code and configuration

Revision control systems don’t care about the data they control.
Use them to track changes and collaborate on all sorts of things:
 Internet drafts

 Network policy documents

* Training materials

 Presentations

e

Revision control options

Amount of control Pros and cons

Chaos reigns
Loose files all over the place

Archiving for posterity
NFS, SMB, OneDrive, Dropbox,...

Revision control
CVS, Subversion, Git, etc.

v Easy to learn
X Impossible to undo changes

v Audit and roll back previous versions
X Concurrent access nightmares

V' Full control and low-friction collaboration
X Learning curve

Basics of revision control

Server Computer

Version Database

Central VCS Server Version 3
Computer A I
Local Computer Version 2

' Version Database
File ‘\\ Version 1
Checkout Version Database ~——

Version 3

Version 2 .
‘ Version 2 Computer A Computer B

. computer © | < <
Version 1
/

A
A4

L Version 1
4/ Version Database Version Database

Version 3 Version 3

| |
Version 2 Version 2

| |
Version 1 Version 1

Git survival kit for network engineers

Revision control system? Content addressable filesystem?
Something software people use? A synonym for software people?
Why should network engineers care?

=

What is Git anyway?

Git is a free and open source distributed
version control system designed to
handle everything from small to very
large projects with speed and efficiency.

From git-scm.com

GitHub is a company providing a
cloud service built around Git.

e

THISIS GIT: IT TRACKS COLLABORATIVE. WORK
ON PROTECTS THROUGH A BEAUTIFUL
DISTRIBUTED GRAPH THEORY TREE. MODEL.

{ COOL. HoU DO WE LSE IT?

NO IDEA. JUST MEMORIZE. THESE. SHELL
COMMANDS AND TYPE. THEM TO SYNC LR
IF YOU GET ERRORS, SAVE. YOUR WORK
ELSEWHERE, DELETE THE PROTECT,
AND DOUNLOAD A FRESH COPY.

!ﬁ

https://xkcd.com/1597/

10

Be nice to your future self

The Git commit command writes
staged changes to the repository. The
commit message should explain what

the changes are intended to do.

The log of a repository are notes to
your future self. When things break,
you will want to read them.

COMMENT DATE
CREATED MAIN LOOP & TMING CONTROL.
ENABLED CONFIG FILE PARSING
MISC BUGFIXES
CODE ADDITIONS/EDITS
MORE. CODE
HERE HAVE CODE.
ARAAAAAA
ADKFJISLKDFISOKLFT
MY HANDS ARE TYPING WORDS

HAAARAARAAANDS

AS A PROJTECT DRAGS ON, MY GIT COMMIT
MESSAGES GET LESS AND LESS INFORMATIVE.

https://xkcd.com/1296/

11

Git commands for everyday use

Get a repository
git init
git clone

Manipulate the index
git add
git rm

Commit changes
git commit

Review logs

git log
git show

e

Figure out what’s happening
git status
git diff

Undo changes
git reset
git checkout

Work with others
git fetch
git rebase

12

GUI Git tools

Git comes with two GUIs: gitk for
browsing branches and git-gui for
preparing/staging commits. Neither of
them is particularly useful.

Atlassian Sourcetree (free) is pretty
and works well.

GitHub has desktop clients (also free).

Sublime Merge (US$99) is also very
pretty, and also works well.

o

File status

SSSSSS

OOOOO

> origin

All Branches ¢ Show Remote Branches ¢ Ancestor Order ¢

nnnnnnnnnnn

eeeeeeeeeeeeeeeeeeeeee

Some important stuff

JJJJJJJ

mmmmmmmmmmmm

249cc36 Philip Paeps <phi... Today at 11:29
dOclea3 Philip Paeps <phi... Today at 11:27

fcbb4ac3 Philip Paeps <phi... Today at 11:19

13

Five-minute intro to Git (demo

| NON | ~|projects/git-demo-1

philipadibblexr:~ % mkdir -p projects/git-demo-1; cd projects/git-demo-1
philipadibbler:~/projects/git-demo-1 % git init
Initialized empty Git repository in /Users/philip/projects/git-demo-1/.8it/

main philipa@dibbler:~/projects/git-demo-1 %

~[projects/git-demo-1

main philip@dibbler:~/projects/git-demo-1 % echo hello > myfile.txt
main? philip@dibbler:~/projects/git-demo-1 % git add myfile.txt
mainx philip@dibbler:~/projects/git-demo-1 % git commit -m "Initial commit"
[main (root-commit) 7992795] Initial commit
1 file changed, 1 insertion(+)
create mode 100644 myfile.txt
main philj
commit 799
Author: main philipadibbler:~/projects/git-demo-1 % echo bye >> myfile.txt
AuthorDatemain+ philipadibbler:~/projects/git-demo-1 % git add myfile.txt
Commit: main* philip@dibbler:~/projects/git-demo-1 % git commit -m "Something changed"
CommitDate¢[main ©5a8572] Something changed
1 file changed, 1 insertion(+)
Initiimain philip@dibbler:~/projects/git-demo-1 % git log
main phil:commit ©5a85726da38c9fd3be29b80b2ab87425b651725 (HEAD -> main)
Author: Philip Paeps <philip@trouble.is>
AuthorDate: Fri Nov 17 11:18:51 2023 +0800
Commit: Philip Paeps <philip@atrouble.is>
CommitDate: Fri Nov 17 11:18:51 2023 +0800

~[projects/git-demo-1

Something changed

commit 7992795786b4577f85fdf5170954bc1f17b8c19b
Author: Philip Paeps <philip@trouble.is>
AuthorDate: Fri Nov 17 11:17:56 2023 +0800
Commit: Philip Paeps <philip@atrouble.is>
CommitDate: Fri Nov 17 11:17:56 2023 +0800

Initial commit
main philipadibbler:~/projects/git-demo-1 %

Create a new repository
git 1nit

Add a file to the staging area
git add

Commit changes to the repository
git commit

Show history
git log

14

A series of snapshots

Each commit is a snapshot of the
repository at that point in time.

Git references snapshots by the SHA-1
hash of their contents.

Most Git operations are local.

Git generally only adds data. Itis
difficult to /ose data once committed.

o

A2 A2

B1 B2

c2 C3

15

Git terminology: states and the index

Three main states of Git:

.81t directory

Working Staging e . .
(Repository) » Modified files have uncommitted changes

—— « Staged changes will be written to the
repository in the next commit (“index”)
* Committed changes are safely stored

Not really a state:

e Untracked files are unknown to Git

e y

Git workflow: recording changes

Untracked Unmodified

Add the file

Remove the file

Edit the file

Stage the file

17

Using the index effectively (demo)

| NON] ~[projects/git-demo-2

main+ philip@dibbler:~/projects/git-demo-2 % git status
On branch main
Changes not staged for commit:

(use "git add <file>..." to update what will be committed)
(use "git restore <file>..." to discard changes in working directory)

no cha git add --patch

mains gmain+ philip@dibbler:~/projects/git-demo-2 % git add --patch
diff —-diff --git a/changes.txt b/changes.txt

index bindex bf43d3b..50d32f1 100644

--— a/c--- a/changes.txt

+++ b/c+++ b/changes.txt

2 -1 +3d -1 +1,4 A

git add --patch

+This i+This is
+Some 1+Some 1i
+0ther +0ther 1i
+Git gi+Git git
main* p(1/1) +This is a file that I have changed.
+Some lines are useful.
+0ther lines not so much.
+Git git add --patch to stage chansges selectively.

.git/addp-hunk-edit.diff [Git(main)]
"~/projects/git-demo-2/.git/addp-hunk-edit.diff" 15L, 657B

Stage changes before committing
git add --patch

Undo local changes
git restore

Keeping track of local changes
git status
git diff

18

Basics of Git branches

98ca9 — 34ac2

.
e

<+«— f30ab

Snapshot C

A branch is a named pointer to a
snapshot (commit) known to Git.

Git makes it easy to switch between

branches and record distinct histories.

The HEAD points to the currently
checked out branch (commit).

19

Branching essentials (demo

| NON J ~|projects/git-demo-3

main philipadibblexr:~/projects/git-demo-3 % git log
commit 551f624c20c93378b263eea7cec9ae7cll5a8e66 (HEAD -> main)
Author: Philip Paeps <philip@trouble.is>

AuthorDate: Sat Nov 18 12:52:08 2023 +0800
Commit: Philip Paeps <philip@trouble.is>
CommitDate: Sat Nov 18 12:52:08 2023 +0800

~[projects/git-demo-3

main pkdemo philip@dibbler:~/projects/git-demo-3 % git rm hello.txt
Switcherm 'hello.txt'
demo phdemo* philip@dibbler:~/projects/git-demo-3 % git commit -m "Remove hello.txt"
commit [demo bd527d6] Remove hello.txt
Author: 1 file changed, 1 deletion(-)
Authorl[delete mode 100644 hello.txt
Commit:demo philj i i
1 ~[projects/git-demo-3
demo philip@dibbler:~/projects/git-demo-3 % git log demo
Fir commit bd527d6f23e77b978c3e63980e2b24e645dea222 (HEAD -> demo)
demo ph Author: Philip Paeps <philip@trouble.is>
AuthorDate: Sat Nov 18 12:53:29 2023 +0800
Commit: Philip Paeps <philipatrouble.is>
CommitDate: Sat Nov 18 12:53:29 2023 +0800

Remove hello.txt

commit 551f624c20c93378b263eea7cec9ae7cl15a8e66 (main)
Author: Philip Paeps <philip@trouble.is>
AuthorDate: Sat Nov 18 12:52:08 2023 +0800

Commit: Philip Paeps <philip@trouble.is>

CommitDate: Sat Nov 18 12:52:08 2023 +0800

First commit
demo philip@dibbler:~/projects/git-demo-3 % git log main
commit 551f624c20c93378b263eea7cec9ae7cll5a8e66 (main)
Author: Philip Paeps <philip@trouble.is>
AuthorDate: Sat Nov 18 12:52:08 2023 +0800
Commit: Philip Paeps <philip@trouble.is>
CommitDate: Sat Nov 18 12:52:08 2023 +0800

First commit
demo philip@dibbler:~/projects/git-demo-3 %

Create a new branch
git branch <branch>
git checkout -b <branch>

Switching between branches
git checkout <branch>

Keeping track of changes on branches
git log <branch>
git diff <branch>

20

Branches: creating a branch

Creating a branch adds a new pointer.
The HEAD does not move.

g1t branch testing

98ca9

4—

34ac2

4—

f30ab

21

Branches: switching to another branch (1)

Switching to a branch moves the HEAD.

g1t checkout testing

98ca9 ¢———

34ac2

4—

f30ab

22

Branches: committing to a branch

Committing a change moves the
current branch and the HEAD.

SEDITOR file.txt
git commit -m "change made"

@

98ca9 <+— 34ac2 4+— f30ab

<4—

87ab2

==
=

23

Branches: switching to another branch (2)

Switching to a branch moves the HEAD.

g1t checkout master

The commit only exists on the testing

#
@

branChO 98ca9 +— 34ac2 +— f30ab

4_

87ab2

=

24

Branches: divergent histories

Committing a change moves the
current branch and the HEAD.

SEDITOR file.txt
git commit -m "change made"

The histories have diverged. Switching
between master and testing will show
their respective histories.

e

98ca9 <4+— 34ac2 <4+— f30ab

=

/
\

c2b9e

87ab2

e

25

Using branches to track changes (demo)

@ [) ~[projects/git-demo-4

main philipadibblexr:~/projects/git-demo-4 % git log

commit bd645577e403589ce92ea4578b677cObedcf1208 (HEAD -> main)
Author: Philip Paeps <philip@trouble.is>

AuthorDate: Sat Nov 18 13:27:13 2023 +0800

Commit: Philip Paeps <philip@trouble.is>

CommitDate: Sat Nov 18 13:27:13 2023 +0800

More meaningful changes

commit c4d8ed9b73f8bc868e766adf8d9a551f10665b91
Author: Philip Paeps <philip@trouble.is>
AuthorDate: Sat Nov 18 13:26:59 2023 +0800
Commit: Philip Paeps <philipatrouble.is>
CommitDate: Sat Nov 18 13:26:59 2023 +0800

Some importaf ~[projects/git-demo-4

demo philipa@dibbler:~/projects/git-demo-4 % git log --graph --oneline
commit 3b52a6856¢(x c4d8ed9 (HEAD -> demo) Some important changes
Author: Philix 3p52a68 First commit
AuthorDate: Sat Idemo philipa@dibbler:~/projects/git-demo-4 % git reflog
Commit: Philic4adg8ed9 (HEAD -> demo) HEAD@{@}: checkout: moving from main to demo
CommitDate: Sat 'bde4557 (main) HEAD@{1}: checkout: moving from demo to main
c4d8ed9 (HEAD -> demo) HEAD@{2}: reset: moving to c4d8ed9
First commit pde4557 (main) HEAD@{3}: reset: moving to bd64557
main philip@dibb’cf25996 HEAD@{4}: commit: Vandalism for demonstration
8 bd64557 (main) HEAD@{5}: checkout: moving from main to demo
bd64557 (main) HEAD®{6}: commit: More meaningful changes
c4d8ed9 (HEAD -> demo) HEAD®@{7}: commit: Some important chansges
3b52a68 HEAD®{8}: commit (initial): First commit

demo philip@dibbler:~/projects/git-demo-4 %

Remembering where you’ve been

git reflog

Moving branches
git reset

Keeping track of changes on branches
git log --graph <branch>
git diff <branch>

26

Remote repositories

Server Computer

Version

Version

Version

Version

Database

Git is a distributed revision control
system. Adding remote repositories
enables sharing changes with others.

Notes that “remote” repositories can
be elsewhere on the “local” machine

too.

27

Working with repositories

A remote is a complete clone of the
repository including all history. This
makes collaborating with others easy.

There are several possible workflows
of differing complexity. Most of these
are irrelevant to network engineers.

shared
repository
IHEIEIHHHHI

28

Using remote repositories (demo)

| NON J ~|projects/git-demo-5

philipadibbler:~/projects % git init --bare git-demo-5.git

Initialized empty Git repository in /Users/philip/projects/git-demo-5.g8it/
philipadibbler:~/projects % cd git-demo-5

demo philipadibbler:~/projects/git-demo-5 % git remote add origin ../git-demo-5.
git

demo philip@dibbler:~/projects/git-demo-5 % git push —-all origin

Enumerating objects: 9, done.

Counting objects: 100% (9/9), done.
Delta compression using up to 8 threads
Compressing objects: 100% (3/3), done.
Writing objects: 100% (9/9), 705 bytes | 705.00 KiB/s, done.
Total 9 (delta @), reused @ (delta @), pack-reused ©
To ../git-demo-5.g8it
* [new branch] demo -> demo
* [new branch]
demo philipadibb ® ®
demo philip@dibbler:~/projects/git-demo-5 % git log --graph --oneline
* 97d3ed4e (HEAD -> demo) Trivial changes for sharing
* c4d8ed9 () Some important changes
* 3b52a68 First commit
demo philip@dibbler:~/projects/git-demo-5 % git push origin demo
Enumerating objects: 5, done.
Counting objects: 100% (5/5), done.
Writing objects: 100% (3/3), 257 bytes | 257.00 KiB/s, done.
Total 3 (delta @), reused © (delta @), pack-reused @
B To ../git-demo-5.¢8it
c4d8ed9..97d3ed4e demo -> demo
demo philip@dibbler:~/projects/git-demo-5 %

~[projects/git-demo-5

Adding remote repositories
git remote add <name> <URL>

Sharing changes with remotes
git push <remote> <branch>

Getting changes from others
git fetch <remote>
git fetch --all

Merging changes from others
git rebase <branch>

29

GitHub, GitLab, etc

Collaboration tools and Git repository hosting.

=

30

Tools for collaboration

GitHub provides hosting for Git
repositories.

Superficially targeted at software
projects but great for any Git
repository.

Issue tracker. Pull requests. Wiki.

31

The GitHub workflow

1.
2
3
4.
5
6

o

Fork a repository from a project

. Clone your fork and make changes on a branch

. Push the branch to your namespace

Create a Pull Request in the project repository

. Discuss changes and push updates to your branch

. Project owner merges the accepted pull request

32

GitLab

Very popular implementation of the
GitHub workflow. Developed as an
open source project with a
premium/hosted business model.

Self-hosted option with convenient
integrations for enterprises.

A GitLab

33

Bitbucket

Variant on the theme. Integrates well
with other Atlassian tools. Also has a
very credible offline GUI client.

© Bitbucket

34

GitHub tour (demo)

Credits and further reading

Most of the images in this presentation are from the excellent “Pro Git” book by
Scott Chacon and Ben Straub. (CC BY-NC-SA 3.0)

Book:
Source code:

GitHub cheat sheet

Escaping a Git mess (Justin Hileman)

o .

https://git-scm.com/book/en/v2/
https://github.com/progit/progit2
https://training.github.com/downloads/github-git-cheat-sheet/
http://justinhileman.info/article/git-pretty/

Thank you.

Philip Paeps
philip@trouble.is

manrs.org

