
Git for network engineers
Philip Paeps

philip@trouble.is

PacNOG 32 — Nukuʻalofa, Tonga

27 November 2023

Agenda

2

1. Revision control essentials

2. Git survival kit for network engineers

3. Using GitHub or GitLab to collaborate

Revision control essentials

Computers are better at remembering things than you are.

4

Revision control for network engineers

5

Revision control systems remember changes you make to your network.

With good revision control hygiene, you can easily:

• Revert configurations to a known working state

• Review changes before deploying them to production

• Recover configurations when network equipment breaks

• Collaborate on projects with others without conflicts

Not only for source code and configuration

6

Revision control systems don’t care about the data they control.

Use them to track changes and collaborate on all sorts of things:

• Internet drafts

• Network policy documents

• Training materials

• Presentations

Revision control options

7

Amount of control Pros and cons

Chaos reigns
Loose files all over the place

✓ Easy to learn
✗ Impossible to undo changes

Archiving for posterity
NFS, SMB, OneDrive, Dropbox,…

✓ Audit and roll back previous versions
✗ Concurrent access nightmares

Revision control
CVS, Subversion, Git, etc.

✓ Full control and low-friction collaboration
✗ Learning curve

Basics of revision control

8

Git survival kit for network engineers

Revision control system? Content addressable filesystem?
Something software people use? A synonym for software people?
Why should network engineers care?

9

What is Git anyway?

10

Git is a free and open source distributed
version control system designed to
handle everything from small to very
large projects with speed and efficiency.

From git-scm.com

GitHub is a company providing a
cloud service built around Git.

https://xkcd.com/1597/

Be nice to your future self

11

The Git commit command writes
staged changes to the repository. The
commit message should explain what
the changes are intended to do.

The log of a repository are notes to
your future self. When things break,
you will want to read them.

https://xkcd.com/1296/

Git commands for everyday use

12

Get a repository
git init
git clone

Manipulate the index
git add
git rm

Commit changes
git commit

Review logs
git log
git show

Figure out what’s happening
git status
git diff

Undo changes
git reset
git checkout

Work with others
git fetch
git rebase

GUI Git tools

13

Git comes with two GUIs: gitk for
browsing branches and git-gui for
preparing/staging commits. Neither of
them is particularly useful.

Atlassian Sourcetree (free) is pretty
and works well.

GitHub has desktop clients (also free).

Sublime Merge (US$99) is also very
pretty, and also works well.

Five-minute intro to Git (demo)

14

Create a new repository
git init

Add a file to the staging area
git add

Commit changes to the repository
git commit

Show history
git log

A series of snapshots

15

Each commit is a snapshot of the
repository at that point in time.

Git references snapshots by the SHA-1
hash of their contents.

Most Git operations are local.

Git generally only adds data. It is
difficult to lose data once committed.

Git terminology: states and the index

16

Three main states of Git:

• Modified files have uncommitted changes

• Staged changes will be written to the
repository in the next commit (“index”)

• Committed changes are safely stored

Not really a state:

• Untracked files are unknown to Git

Git workflow: recording changes

17

Using the index effectively (demo)

18

Stage changes before committing
git add --patch

Undo local changes
git restore

Keeping track of local changes
git status
git diff

Basics of Git branches

19

A branch is a named pointer to a
snapshot (commit) known to Git.

Git makes it easy to switch between
branches and record distinct histories.

The HEAD points to the currently
checked out branch (commit).

Branching essentials (demo)

20

Create a new branch
git branch <branch>
git checkout –b <branch>

Switching between branches
git checkout <branch>

Keeping track of changes on branches
git log <branch>
git diff <branch>

Branches: creating a branch

21

Creating a branch adds a new pointer.
The HEAD does not move.

git branch testing

Branches: switching to another branch (1)

22

Switching to a branch moves the HEAD.

git checkout testing

Branches: committing to a branch

23

Committing a change moves the
current branch and the HEAD.

$EDITOR file.txt
git commit -m "change made"

Branches: switching to another branch (2)

24

Switching to a branch moves the HEAD.

git checkout master

The commit only exists on the testing
branch.

Branches: divergent histories

25

Committing a change moves the
current branch and the HEAD.

$EDITOR file.txt
git commit -m "change made"

The histories have diverged. Switching
between master and testing will show
their respective histories.

Using branches to track changes (demo)

26

Remembering where you’ve been
git reflog

Moving branches
git reset

Keeping track of changes on branches
git log --graph <branch>
git diff <branch>

Remote repositories

27

Git is a distributed revision control
system. Adding remote repositories
enables sharing changes with others.

Notes that “remote” repositories can
be elsewhere on the “local” machine
too.

Working with repositories

28

A remote is a complete clone of the
repository including all history. This
makes collaborating with others easy.

There are several possible workflows
of differing complexity. Most of these
are irrelevant to network engineers.

Using remote repositories (demo)

29

Adding remote repositories
git remote add <name> <URL>

Sharing changes with remotes
git push <remote> <branch>

Getting changes from others
git fetch <remote>
git fetch --all

Merging changes from others
git rebase <branch>

GitHub, GitLab, etc

Collaboration tools and Git repository hosting.

30

Tools for collaboration

31

GitHub provides hosting for Git
repositories.

Superficially targeted at software
projects but great for any Git
repository.

Issue tracker. Pull requests. Wiki.

The GitHub workflow

32

1. Fork a repository from a project

2. Clone your fork and make changes on a branch

3. Push the branch to your namespace

4. Create a Pull Request in the project repository

5. Discuss changes and push updates to your branch

6. Project owner merges the accepted pull request

GitLab

33

Very popular implementation of the
GitHub workflow. Developed as an
open source project with a
premium/hosted business model.

Self-hosted option with convenient
integrations for enterprises.

Bitbucket

34

Variant on the theme. Integrates well
with other Atlassian tools. Also has a
very credible offline GUI client.

GitHub tour (demo)

35

Credits and further reading

37

Most of the images in this presentation are from the excellent “Pro Git” book by
Scott Chacon and Ben Straub. (CC BY-NC-SA 3.0)

Book: https://git-scm.com/book/en/v2/
Source code: https://github.com/progit/progit2

GitHub cheat sheet
https://training.github.com/downloads/github-git-cheat-sheet/

Escaping a Git mess (Justin Hileman)
http://justinhileman.info/article/git-pretty/

https://git-scm.com/book/en/v2/
https://github.com/progit/progit2
https://training.github.com/downloads/github-git-cheat-sheet/
http://justinhileman.info/article/git-pretty/

Thank you.

manrs.org

Thank you.

manrs.org

Philip Paeps

philip@trouble.is

