
Security & Cryptographic Methods

PacNOG 6

Hervey Allen

PacNOG 6

Hervey Allen

NSRC@PacNOG 6
Nadi, Fiji

Reminder: Core Security
Principals

What are they?
(1) -- Confidentiality
(2) -- Integrity
(3) -- Authentication

 - Access Control
 - Verification

(4) -- Availability

NSRC@PacNOG 6
Nadi, Fiji

What We'll Cover

  Digital signatures
  TLS/SSL
  SSH
  PGP

NSRC@PacNOG 6
Nadi, Fiji

When encrypting (review):

Use a symmetric cipher with a random key (the
"session key"). Use a public key cipher to encrypt
the session key and send it along with the
encrypted document.

k1 k2
encrypted

session key

cipher
text

random
session key

ks ks

(private) (public)

NSRC@PacNOG 6
Nadi, Fiji

When authenticating (review):

Take a hash of the document and encrypt only
that. An encrypted hash is called a "digital
signature"

k2 k1

digital
signature

COMPARE

hash hash

(public) (private)

NSRC@PacNOG 6
Nadi, Fiji

Digital Signatures have many uses,
for example:

  E-commerce. An instruction to your bank to transfer
money can be authenticated with a digital signature.
 Legislative regimes are slow to catch up

  A trusted third party can issue declarations such as "the
holder of this key is a person who is legally known as
Alice Hacker"

Like a passport binds your identity to your face

  Such a declaration is called a "certificate"

  You only need the third-party's public key to check the
signature

NSRC@PacNOG 6
Nadi, Fiji

Do public keys really solve the key
distribution problem?

  Often we want to communicate securely with a
remote party whose key we don't know

  We can retrieve their public key over the network

  But what if there's someone in between
intercepting our traffic?

public key

NSRC@PacNOG 6
Nadi, Fiji

The "man-in-the-middle" Attack

  Passive sniffing is no problem

  But if they can modify packets, they can substitute a
different key

  The attacker uses separate encryption keys to talk to both
sides

  You think your traffic is secure, but it isn't!

key 1 key 2

Attacker sees all traffic in plain text - and can modify it!

NSRC@PacNOG 6
Nadi, Fiji

TLS/SSL – Digital Certificates

NSRC@PacNOG 6
Nadi, Fiji

Digital Certificates can solve the man-in-
the-middle problem

  Problem: I have no prior knowledge of the remote
side's key, so cannot tell if a different one has been
substituted

  But maybe someone else does

  A trusted third party can vouch for the remote side
by signing a certificate which contains the remote
side's name & public key

  I can check the validity of the certificate using the
trusted third party's public key

NSRC@PacNOG 6
Nadi, Fiji

Example: TLS (SSL) web server with
digital certificate

  I generate a private key on my webserver

  I send my public key plus my identity (my
webserver's domain name) to a certificate authority
(CA)

  The CA manually checks that I am who I say I am,
i.e. I own the domain

  They sign a certificate containing my public key, my
domain name, and an expiration date

  I install the certificate on my web server

NSRC@PacNOG 6
Nadi, Fiji

When a client's web browser
connects to me using HTTPS:

  They negotiate an encrypted session with me, during
which they learn my public key

  I send them the certificate

  They verify the certificate using the CA's public key, which
is built-in to the browser

  If the signature is valid, the domain name in the URL
matches the domain name in the certificate, and the
expiration date has not passed, they know the connection
is secure

  (Q: why is there an expiration date?)

NSRC@PacNOG 6
Nadi, Fiji

The security of TLS depends on:

  Your webserver being secure
 So nobody else can obtain your private key

  The CA's public key being in all browsers

  The CA being well managed
 How carefully do they look after their own private keys?

  The CA being trustworthy
 Do they vet all certificate requests properly?
 Could a hacker persuade the CA to sign their key pretending
 to be someone else? What about a government?
 Do you trust them? Why?

NSRC@PacNOG 6
Nadi, Fiji

Testing TLS (SSL) Applications
There is an equivalent of telnet you can use:

openssl s_client

It opens a TCP connection, negotiates TLS, then lets you type
data

$ openssl s_client -connect nsrc.org:443
CONNECTED(00000003)
depth=1 /C=US/ST=Washingron/L=Bainbridge Island/O=RGnet/PSGnet/OU= \
Engineering/CN=RGnet Root CA/emailAddress=randy@psg.com
verify error:num=19:self signed certificate in certificate chain
verify return:0
...
New, TLSv1/SSLv3, Cipher is DHE-RSA-AES256-SHA
...

 And, at the end you see:

Verify return code: 19 (self signed certificate in certificate chain)

NSRC@PacNOG 6
Nadi, Fiji

Limitations of s_client

Works only for protocols which use TLS from the
very beginning of the connection
- These protocols are identified by using a different port number to

the non-encrypted version
 (HTTP port 80), HTTPS port 443
 (POP3 port 110), POP3S port 995

Other protocols start unencrypted and then
"upgrade" the connection to encrypted on request
- e.g. SMTP has a "STARTTLS" command
- s_client is not usable for these

NSRC@PacNOG 6
Nadi, Fiji

SSH

NSRC@PacNOG 6
Nadi, Fiji

SSH Uses a Simple Solution to
man-in-the-middle

  The first time you connect to a remote host, remember its
public key

Stored in ~/.ssh/known_hosts

  The next time you connect, if the remote key is different,
then maybe an attacker is intercepting the connection!
 - Or maybe the remote host has just got a new key, e.g. after a
reinstall. But it's up to you to resolve the problem

  Relies on there being no attack in progress the first time
you connect to a machine

  Connect on LAN before travelling with laptop

NSRC@PacNOG 6
Nadi, Fiji

SSH Can Eliminate Passwords

 Use public-key cryptography to prove who you
are

 Generate a public/private key pair locally
ssh-keygen -t rsa
Private key is ~/.ssh/id_rsa
Public key is ~/.ssh/id_rsa.pub

  Install your PUBLIC key on remote hosts
mkdir ~/.ssh
chmod 755 ~/.ssh
Copy public key into ~/.ssh/authorized_keys

 Login!

NSRC@PacNOG 6
Nadi, Fiji

Notes on SSH Authentication

 Private key is protected by a passphrase
 - So you have to give it each time you log in
 - Or use "ssh-agent" which holds a copy of your passphrase
 in RAM

 No need to change passwords across dozens of
machines

 Disable passwords entirely!
 - /etc/ssh/sshd_config

 There are currently two different types of SSH
keys in use:
 - SSH2 DSA, SSH2 RSA
 - (SSH1 RSA is deprecated)

NSRC@PacNOG 6
Nadi, Fiji

PGP/GPG – Pretty Good Privacy

NSRC@PacNOG 6
Nadi, Fiji

PGP Takes a Different View

  We don't trust anyone except our friends
(especially not big corporate monopolies)

  You sign your friends' keys to vouch for them

  Other people can choose to trust your signature
as much as they trust you

  Generates a distributed "web of trust"

  Sign someone's key when you meet them face to
face - "PGP key signing parties"

NSRC@PacNOG 6
Nadi, Fiji

Summary

NSRC@PacNOG 6
Nadi, Fiji

Designing a Good Cryptosystem is
Very Difficult

  Many possible weaknesses and types of attack, often
not obvious

  DON'T design your own!

  DO use expertly-designed cryptosystems which have
been subject to widespread scrutiny

  Understand how they work and where the potential
weaknesses are

  Remember the other weaknesses in your systems,
especially the human ones, speaking of which...

NSRC@PacNOG 6
Nadi, Fiji

The following code was removed from md_rand.c on Debian:

The end result was disastrous...

 MD_Update(&m,buf,j);
 [..]

 MD_Update(&m,buf,j); /* purify complains */

NSRC@PacNOG 6
Nadi, Fiji

This was a human issue, and a subtle one at that. More information
is here:

 http://metasploit.com/users/hdm/tools/debian-openssl/

NSRC@PacNOG 6
Nadi, Fiji

Where can you apply these
cryptographic methods?

At the link layer
PPP encryption

At the network layer
IPSEC, IPv6

At the transport layer
TLS (SSL): many applications support it

At the application layer
SSH: system administration, file transfers
PGP/GPG: for securing E-mail messages, stand-alone documents, software

packages etc.
Tripwire (and others): system integrity checks

NSRC@PacNOG 6
Nadi, Fiji

Start Using Cryptography Now!
 Use ssh for remote administration.

 Use scp/sftp for files transfer (except public ftp
repositories).

  Install pop3/imap/smtp servers with tls support.
Phase out the use of non-tls version.

 Use https for any web application where users enter
passwords or confidential data
 - e.g. webmail, databases, wikis, nagios, cacti

NSRC@PacNOG 6
Nadi, Fiji

Any questions?

